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Abstract

Long-chain alkanethiols adsorb onto gold from solution and form monolayers.

Coadsorption of HS(CH2)i IOH and HS(CH2) 2 1CH 3 from ethanolic solutions of varying

composition generates monolayers, the wertability of which is correlated closely with the

composition of the monolayer. Adsorption of the longer-chain thiol is preferred over the

short chain, and formation of monolayers comprising predominantly one component is
-favored over mixed monolayers containing both compcnent thiols.
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Long-chain thiols (HS(CH2)nX) adsorb from solution onto gold surfaces and form

well-packed, ordered, oriented monolayers. 3,4 The sulfur coordinates strongly to the gold,

the polymethylene chains are all-trans and tilted -20-30* from the normal to the surface,4-5

and the tail group, X, is the predominant group exposed at the monolayer/liquid or

monolayer/air interface. 6 Coadsorption of two or more thiols differing in tail group or

chair length provides a flexible system for varying the chemistry and structure of the

surface in a controlled and pre-determined way.7 In this paper we use monolayers

comprising a mixture of HS(CH2)11OH (represented as HSC 10CH2OH to emphasize the
two important variables: chain length and tail group) and HS(CH2 )2 1CH3 (HSC 2 1CH3) on

gold to demonstrate a relationship between the microscopic structure of the surface and the

wettability of the monolayer (Figure 1). This work is part of a program of physical-organic

chemistry designed to relate atomic-level structure of a surface to macroscopic physical

properties such as wetting and adhesion. 8

Monolayers were formed by immersing gold-mirror substrates (prepared by

evaporation of gold onto chromium-primed, polished silicon wafers) in solutions of the

thiols in degassed ethanol for 12 hours9 at room temperature. 6 The composition of the

monolayer was controlled by varying the ratio R = [HSCjoCH2OH]/[HSC 21 CH 3] in

solution, with the total concentration of thiols held constant at 1 mM. We used two

independent techniques, optical ellipsometry and X-ray photoelectron spectroscopy (XPS),
.4.

to measure the composition of the monolayer. Since the two thiols differ in chain length,0
the relative thickness obtained from ellipsometry and from the peak area of gold10 in XPS

reflects this composition. Similarly, the difference in tail groups allows us to calculate the
surface concentration of HSC 10CH2OH from the peak area of oxygen. The advancing

contact angles (0a) of water and hexadecane (HD) provide useful measures of wettability.

Since the pure methyl-terminated monolayer is hydrophobic (Oa(H20) 1140, Oa(HD) ;

480), and the alcohol-terminated monolayer is hydrophilic (Oa(H20) = ea(HD) 00),
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contact angles are very sensitive to the composition of the monolayer and the structure of

the surface.

Figure 2 plots the ellipsometric thickness, contact angles of water and hexadecane,

and XPS peak areas of gold and oxygen against R.11 Here we note two salient features of

these graphs: a detailed discussion will be deferred to a subsequent paper. First,

ellipsometry and XPS peak areas indicate a dramatic change in the composition of the

monolayer over a narrow range of solution composition, R = 7 - 20. This change in the

V composition of the monolayer is closely correlated with a sharp increase in the

hydrophilicity and oleophilicity of the surface as measured by the advancing contact angles

of water and hexadecane, respectively. 12 Thus the structure of the surface on a

microscopic scale is clearly and directly linked to the wettability of the monolayer, an

important macroscopic quantity. Second, the inflection in the curves occurs, not at R = 1,

but at R -11.13,14 This difference between solution and surface compositions is a general

-feature of competitive adsorption experiments. 15 In this experiment, Van der Waals forces

between close-packed hydrocarbon chains favour adsorption of the longer-chain thiol.

We attempted to model the composition of the monolayer by a simple equilibrium

" expression (Eq. 1) between the solution and the surface (dotted curve in Figure 2, upper

graph)

HSC1OCH 2OHsurface + HSC21CH3solution 1 HSCl0CH2OHsolution + HSC21CH3surface (1)

where the equilibrium constant Keq = 11, independent of solution concentration. Clearly

the observed data do not follow this simple expression: the two components of the6.
'1 monolayer do not act independently, and may act cooperatively to minimize the free energy.

Monolayers composed predominantly of the long-chain methyl-terminated thiol HSC 2 1CH3

(maximizing the chain-packing interactions) or the short-chain hydroxy-terminated thiol

HSCIoCH2OH (maximizing H-bonding both with the solvent and within the monolayer)

0,,



are preferred over monolayers containing a mixture of the thiols.16 The data do not,

however, take the form of step functions in R, which would be expected

thermodynamically if the formation of macroscopic islands were favored.17 Over a narrow

range of R it is possible to form intermediate monolayers containing both thiols; the exact

structure of these monolayers is not clear, but the data are consistent with a model in which

the two components segregate into small clusters on the surface. These monolayers

provide a model system for studying the wettability of complex structures, and for

examining how polar groups interact to minimize their energy in a non-polar

environment.18

Mixed monolayers of thiols on gold allow us to engineer ordered, two-dimensional

systems with A-level control over thickness and structure, and with chemical control over

wettability. Synthetic variation of the tail groups and chain lengths provides great

flexibility in the design of the interfacial structures and gives these systems wide

applicability in the physical, biological and medical sciences.

Acknowledgement. We are grateful to R. Nuzzo and M. Wrighton for helpful

discussions.
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FIGURE CAPTIONS

Figure 1. Schematic ilustrations of monolayer structures: pure HS(CH2)1 1OH (A); pure

HS(CH2)2 1CH3 (B); monolayer containing a mixture of the two thiols (C).

Figure 2. Monolayers formed by the adsorption of mixtures of HS(CH2)1 10H and

HS(CH 2)2 1CH 3 onto gold from solution. The abscissa represents the ratio, R =

[HS(CH2)11OH]/[HS(CH 2)2 1CH3] in solution. Squares and circles represent data from

two separate experiments. Upper Figure: ellipsometric thickness. The solid curve is a fit

to the data. The dotted curve represents the theoretical thicknesses for Keq = 11 (see text

for definition). Middle Figure: advancing contact angles of water (open symbols) and

hexadecane (ND) (solid symbols) obtained by the sessile drop technique. Lower Figure:

areas of the Au 4f7/ 2 (open symbols) and 0 Is peaks (solid symbols) obtained by XPS.

The vertical scale is arbitrary. Data were collected on a SSX-100 X-ray photoelectron

spectrometer (Surface Science Instruments) with a monochromatized Al Kct source, 100

eV pass energy, and 1-mm X-ray spot. The peaks were fitted using a symmetrical 90%

Gaussian/ 10% Lorentzian profile.
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